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ABSTRACT

A comparison is made between the stability properties of the non-divergent and divergent one-parameter models.
It is shown that the introduction of divergence in the one-parameter model reduees the rate of growth of unstable
disturbances and confines the instability to a more narrow hand of wavelengths.

Changes in zonal momentum, momentum transports, and energy conversions between mean flow kinetic energy
and eddy kinetic energy are investigated in the linear case, as well as by extended integrations of the spectral form
of the prognostic equations allowing only a few wave numbers.

Long-term variations in barotropic flow, where the flow is initially stable, are investigated using the spectral
formulation, but allowing only as many wave numbers as are needed to investigate variations in the profile of the

zonal wind.

1. INTRODUCTION

The stability of barotropic flow has been investigated
in some detail in earlier studies, notably by Kuo [§]
and Eliasen [7]. The extensive use of the barotropice
model in operational forecasting has caused a continuing
interest in the performance of this model. Certain
modifications have been introduced in the forecast equa-
tions to alter the forecasts of planctary waves. These
semi-empirical corrections are described by Cressman
[5] and Wiin-Nielsen [17]. The so-called divergent
baratropic model is probably going to be used in opera-
tional forecasting for some time to come. It is therefore
of interest to study the stability of disturbances in this
model and to compare the results with the corresponding
results for the non-divergent, one-parameter model.
The first part of this paper is concerned with such a study.

There has been recently an increasing interest in the
performance of the numerical prediction models when
they are integrated over extended periods of time up to
several days, weeks, or even months. Thompson [15]
has developed a heuristic theory of long-period velocity
rariations in barotropic flow. It was especially shown
from this theory that intense jet stream maxima have
a tendency to split into two maxima traveling toward
the north and the south, a situation which seems to be
characteristic of certain types of atmospheric flow con-
nected with blocking. Lorenz [9] has shown how the
barotropic vorticity equation can be reduced to a maxi-
mum simplification and has investigated the extended
time-integration of such a model. The same approach
was used by Bryan [3] to perform experiments with a
simple baroclinic model dealing with the different regimes
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caused by changes of the rotation of the earth and the
rate of heating

Saltzman [14] has investigated the non-linear inter-
action between the zonal flow, large-scale, and small-
scale disturbances by an extended integration of the
barotropic vorticity equation using a limited number of
Fourier components.

The general circulation experiments performed by
Phillips [12] deal with an integration of the two-parameter,
quasi-geostrophic models over extended periods including
adiabatic cffects and friction. Extensions of Phillips’
work to more realistic models based on the primitive
cquations and having a greater vertical resolution in
addition to more realistic heating and f{rictional effects
are underway in different research groups.

The second part of this paper will deseribe the varia-
tions in the flow of a barotropic fluid on a large time scale.
We shall be concerned partly with a flow which is initially
unstable, and partly with a flow which is initially stable.
Integral quantities and their variation in time will be given
because we are not interested in the details of the in-
dividual disturbances. The changes in the profile of
the zonal wind, the momentum transports, and the
energy conversions between the kinetic energies of the
mean zonal flow and the disturbances will be reproduced
in detall. We shall use a simplification of the baro-
tropic vorticity equation for these purposes of a type
similar to Lorenz’s minimum form, but shall allow only
as many wave components as are needed to describe :
zonal wind profile which has at least two maxima.

2. STABILITY STUDY OF THE DIVERGENT,
ONE-PARAMETER MODEL

The prognostic equation for the divergent, one-param-
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eter model will be given in the form:
OVH/ot+V - V(VY +f) = g*0y/0t 2.1
where ¢? is determined by the expression:
i da 2
The notations have the following meaning: ¢ is the

stream function, V=kX V¢ the horizontal non-divergent
wind, k a vertical unit vector V2=92/dxs?-0%/dy? the two-
dimensional Laplacian, and f the Coriolis parameter. In
equation (2.2) ¢=—(a/f) 00/0p is a measure of static
stability, f, a standard value of the Coriolis paramecter, and
A (p) is the empirical function describing the vertical
variation of the horizontal wind around the level where
the vorticity equation is applied (500 mb.), according to
the assumption

The subscript 5 has been dropped from the start in
equation (2.1). A derivation leading to this particular
form of the prognostic equation has been given by Wiin-
Nielsen [17].

In the first part ol this section we shall consider dis-
turbances on a zonal flow in a region bounded to the north
and south by rigid walls. We shall divide any quantity
into its zonal mean and deviations from the zonal means.
For an arbitrary quantity we write:

a=a-t+a’

- 1 {r
a== adr.
]‘ J()

L is the largest possible wavelength,
When we substitute in (2.1) and neglect second order
terms we may derive the following equation:

¢ ,a; U, L OY
A+ 4(6~'* o=

(2.4)
where

(2.5)

(2.6)

We shall consider perturbations in the eddy stream funec-
tion of the tvpe:

¥ (Y, ) =aly)er=0. (2.7)

When we substitute (2.7) into (2.6) we can write the
latter equation in the form:

2
(i—0) [ Goawia [H = T e | a=o.

The general eigenvalue problem to find for which
connected values of u and ¢ there exist solutions to
equation (2.8), will not be treated in this paper, but we
shall restrict ourselves in this first analyvtical treatment
to an initial zonal wind profile of the type

(2.8)
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Interpreting D as the distance between the walls we

consider a profile where u=0 at both walls and has a

value u=28 for y=D/2, i.e., in the center ol the channel.

We shall in the following use an expansion of the
function a=a () in the form:

[) 7/ (2.9

a(y)= Z a, sin (n\y) (2.10)

n=1

where A=n/D. The expression (2.10) for the meridional
dependence of the perturbation stream [unction is chosen
in such a way that ¢ always disappears at the northern
and southern boundaries of the region. The meridional
velocity component »=v” will therelore also vanish at the
boundaries, and the boundary condition corresponding to
rigid walls is therclore automatically satisfied.

The expression for a (y) is inserted in equation (2.8)
and we obtain after reduction a set of linear homogeneous
equations which can be used to determine the possible -
values of ¢ and the ratios between the values of «,. The
resulting set of equations may be written in the form:
% (W24 (n?

—4n)A?) Ba,, _ o+ (2 +122?) (¢— B) +84+¢*¢c)a,

—}—% (24 (2 +4n) A\ Ba, ,=0.  (2.11)

We notice in the set (2.11) that it divides naturally
into two sets corresponding to even and odd values of n.
It should further be mentioned that we must put a finite
value on the maximum number N which n may obtain in
order to determine the values of ¢. We shall in this
study only be concerned with small and odd values of
n and N. Larger values of N have heen considered by
Eliasen [7] but mostly in cases where the g-effect, and
naturally also the effect of divergence, was excluded by
assumption.

Restricting ourselves to the most simple ease N=3 we
obtain the following set of equations from (2.11)

-

L0 gPet B Blswt—x) ey

3 (25X Bay=0

Y
2
—

L =30 Bay+ (0N g2 | gD)e
+B— BON 4w las=0

[N}

A set ol equations very similar, but not identical to
(2.12) may naturallv also be obtained by applying the
same technique as Charney [4] in deriving the stability
criterion for a two-parameter model with horizontal as
well as vertical shear. TInstead of the series (2.10) one
obtains the equations corresponding to (2.12) by applving
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Figure 1.—The imaginary part, c; of the solution to equation
(2.13) as a function of the zonal wavelength for a maximum
meridional wavelength of 4000 km., B=30 m. sec.”? Curve (1):
8=0, ¢2=0; (2): =08, =0; (3): B=PBu, ¢®=0.5X10"12 m,?;

(4): B=84, ¢=1.0X10"12 m."2; (5): =P, ¢=15X10"2 m.~2-

the linearized equation (2.8) in the center of the channel
and midway between the center and the wall. Merid-
ional derivatives are replaced by finite differences. It is
a matter of convenience whether one or the other pro-
cedure is used.

The possible values of ¢ are now determined from the
condition that the determinant of the system (2.12) has
to vanish in order to have non-trivial solutions. This
condition leads to the equation:

N +p2+ @) (ON 2+ ) *+H 28BN+ w7+ ¢°)
—1/2B (5pt+9N+46u*N2+-5u%¢?
+17N¢") Je+[6°—1/28B (51> +17)%)
/4B (5pt—3NE500) =0 (2.13)

The frequency equation (2.13) has been solved nu-
merically for a number of cases. These cases fall into
different series. For each value of the maximum, merid-
ional wavelength (27/\) it was decided to vary the zonal
wavelength (L=2x/u) in each series keeping ¢ constant,
The effect of B and of divergence was tested by keeping
B=0 and ¢=0 in one series of computations. The
results of these computations are given in figures 1, 2,
and 3.

The maximum, meridional wavelength in the com-
putations illustrated in figure 1 was 4,000 km. and the max-

MONTHLY WEATHER REVIEW

-
‘.§ B
\E‘ —
oL
- i
o — (3) S
| (4) _
il (AN
o} 2 9 6 8 10 12 14
L1073 km.

Figrre 2.—The imaginary part, ¢; of the solution to equation
(2.13) as a function of the zonal wavelength for a maximum
meridional wave length of 6,000 km., B=30 m. sec.”! The
curves (1), (2), (3), and (4) as in figure 1.
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Ficure 3.—The imaginary part, ¢; of the solution to equation
(2.13) as a function of the meridional wavelength for a fixed
zonal wavelength of 5,000 km., B=30 m. sec.~! The curves (1),
(2), and (3) as in figure 1.

imum zonal speed in the initial profile 60 m. sec.”* (B=
30 m. sec.”!). This case corresponds to a rather narrow
intense jet stream. The absecissa in the figure is the zonal
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wavelength in the unit of thousands of km., while the ord-
inate is the imaginary part of the wave speed:¢,. The fig-
ure contains five curves corresponding to the cases: (1)
B=0, ¢=0; (2) B=Bs, ¢=0; (3) B=Ps, ¢=0.5X10"2 m.™*
(4) B=Bus, ¢=1.0X10"2m."%; and (5) =44, ¢=1.5X 10712
m.~%

It is seen by comparing the two first cases that the -
effect has a stabilizing influence on the perturbations in the
sense that the magnitude of ¢; is smaller for 80 than in
the case =0 and also that the band of zonal wavelengths
for which instability occurs is more narrow for g3£0.
By comparing the first two cases with the last three it is
furthermore seen that the effects of ¢, which measures
the intensity of the divergence implied by the model, are
to further decrease the instability of the waves in the
model. The divergent, one-parameter model is therefore
more stable than the non-divergent model.

The results are verified by figure 2, which contains
similar calculations with the maximum, meridional wave-
length at 6,000 km. The important new information
contained in this figure is that the waves are more stable
when the meridional wavelength is increased. For D=
6,000 km. it is seen that all wavelengths are stable in the
case of B=Py and ¢=1.5X10""?m."? and only the waves
in a narrow band around 4,000 km. are unstable for
B=B:; and ¢=1.0X10"2m. 2. Figure 3 contains curves
giving the imaginary root as a function of the meridional
wavelength for a fixed value of the zonal wavelength,
L=5,000 km.

The information contained in figures 1, 2 and 3 may
also be expressed in terms of the time, T, it would take to

double the amplitude of the unstable perturbation. This
time can be determined from the formula
In 2
T= . (2.14)

where ¢, is the positive, imaginary part of the wave speed.
If the wavelength L=2x/u is expressed in the unit 1,000
km., ¢; in m. sec.”, and 7"in days we obtain

T—1.28L

i

(2.15)

The curves in figures 1, 2 and 3 indicate doubling times
which may be as short as 0.5 day, but more typically are
of the order 1-2 days.

The general conclusion from these calculations is there-
fore that unstable waves are possible even when the g-effect
and the divergence effects are included in the analysis.
Both of these effects have a stabilizing influence on the
waves in the sense that the waves become more stable for
larger values of 8 and ¢ as they do for larger values of the
maximum, meridional wavelength.

The general validity of the conclusions which have been
reached in this section may be questioned because only the
terms corresponding to n=1 and n=3 in (2.10) have been
included in the frequency equation (2.13). If we also
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included the next odd value, n=>5, the result would be
that (2.13) would be replaced by a cubic equation, while
the corresponding equation would be of “the fourth degree
if also n=7 were included. A priori the poss1b111ty«ex1s’os
that several amplifying modes will be present in thd solu-
tion, and that the growth rate of these modes is different
from the one found in this section. Such conditions are
found in the theory of baroclinic stability (Charney [4],
Murray [11]). In the case of barotropic stability, under
investigation here, there exists a limited amount of infor-
mation regarding the higher modes in the paper by Eliasen
{7], who has found the roots in the frequency equation up
to and including n=8. 1In the case of a symmetric,
harmonic velocity profile in the zonal current he finds for
n<8 that only one unstable mode exists, and that the
growth rate is the same for 3 <n <6, but somewhat small-
er for n="7 and n=8. 1t is therefore likely that the di-
agrams in figures 1, 2, and 3 contain the essential features
of the stability of the quasi-barotropic flow, although the
problem needs further investigation.

3. SECOND-ORDER MOMENTUM CHANGES

It is of interest to see what we can say from the solution
of this particular perturbation problem about the second-
order “effects of the perturbations on the mean flow.
Such second-order effects on the mean flow will give the
initial changes, but after a while the mean flow will have
changed so much that the solution of the perturbation
problem no longer applies, which means that the mean
flow now starts to alter the structure of the perturbations
in a way radically different from our solution. This
particular problem will be treated by numerical calcula-
tions in the later section.

The second-order changes in the mean flow can be found
from the first equation of motionin a form applicable to the
model

bu buu auv

¢ SN
-|- BT a‘i‘f?’- (3.1
Defining now
_ 1 (F ‘
u=zf0 udx (3.2)
and writing
u=u-+u’, v=2’, since 5=g~¢=0 (3.3)
o
we obtain from (2.14)
ou_ _ou'v’ (3.4)
ot  dy

The initial changes in the zonal wind can, therefore,
be computed from the convergence of the momentum
transport of the perturbations. We must next evaluate
this quantity from the solution of the perturbation
problem. The general solution for the perturbation
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stream'rfunction can be written (see equations (2.7) and
(2.10)):

(@, y,t)={o® sin \y+a;V sin 3y} e

+{a,® sin Ay+e;® sin 3ny} e’ 2" (3.5)
where ¢; and ¢, are the two solutions of the frequency
equation (2.13) and oV, a;V, ¢®, and o;® are the four
(unknown) amplitudes of the wave components in the
solution. The amplitudes (@) will, in general, be complex
numbers if the wave speed ¢ is complex. Next let the
initial perturbation stream function be given by

o (x, y) = (A, sin \y+A4; sin 3\y)e™=, (3.6)

We have then the following four equations to determine
the amplitudes. Two equations are determined by the
condition that the expression (3.5) has to agree with
(3.6) for t=0, giving: o
a,® @ =4,
) .

g @ = A,

The remaining two equations are determined by one of
the two equations (2.12), which has to be satisfied for
¢=¢ and ¢=¢,. Using the first of the equations (2.12)
we obtain

F(cl)aﬁ“JrGas“‘:O} (3.8)
Fle5)an® 4+-Goy® =0 .
where F(c) and G are defined by the expressions
o )\_2 ¢ g 1 A?
Flo) -(1 +”2+?> e+ 55 B (3—P (3.9)

and

1 %

—3 (1 +5 F) B. (3.10)

The system (3.7), (3.8) becomes eight linear, inhomo-
geneous equations when the amplitudes (o) and wave
velocity (¢) are written as complex numbers and the equa-

tions are separated into real and imaginary parts. Let
the wave speeds be written:
a=R+18, c¢;=R—iS (3.11)
and the amplitudes:
0‘1(1)=X1+?:X2
0‘1(2)=Y1+'iY2
(3.12)

a3(”=Z1—|—iZ2
o=V +iV,

It is obvious that the eight quantities: X, X,, Yy, Y3, Zy,
Zs, Vi, and V, can be determined from (3.7) and (3.8)
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when I and S have been determined from the solution of
(2.13). Wemay therefore consider the real and imaginary
parts of the amplitudes of the wave components as known,
The final expression for the perturbation stream function
may then be written:

¥ (z,y,t)=e*5' { (X, sin \y+Z, sin 3\y) cos u(z—R1)
— (X, sin Ay-+Z, sin 3\y) sin u(z—Rt)}
+e 8 { (Y sin Ay+V sin 3\y) cos u(z—Ri)
— (¥, sin Ay+V, sin 3\y) sin u(z—Rt) }
(3.13)

From the knowledge of the expression for the perturba-
tion stream function it is now a straightforward (although
tedious) computation to evaluate the convergence of the
meridional transport of momentum to be used in (3.4).
We find:

O N[5 (X, Ty XoZs) + e~ (V VY3V

ot .
+(V . X— V2X1‘|‘Z1Y2—Z2Y1)] M(y) (3-14)

where

M (y)=cos 4A\y—-cos 2\y. (3.15)

It can be shown that for our case we will always have

— (X1 Zy—XZ) =T V,—Y,V))=N* (3-16)

and
ViX—V X\ +24,Y—2,Y ,=0. 38.17)
Using this information we may write (3.14) in the form:

-aaiti:-—ll,u)\zN* sinh (2uSt) -M (y) (3.18)
or by integration
- _ N N*
u(y,t)=u(y,0)—2 5 [cosh (2uSH)—1]-M(y). (3.19)

In the cases which have been treated numerically it
has invariably shown up that N* is a positive quantity.
This result is in agreement with remarks made by Kuo
[8], on the basis of results obtained by Tollmien [16], and
we shall show later that we can obtain this result (N*>0)
from physical considerations of the energy conversions
between eddy kinetic and mean kinetic energy.

Taking this result for granted at the moment we can
then find qualitatively what will happen to the profile of
the zonal wind. The function M(y) is plotted in figure 4
as a function of y/D. It has a positive maximum in the
center of the channel and negative minima on both sides.
Since furthermore [cosh (2uSt)—1] is positive for £>0
it follows that the last term on the right side in (3.19)
has the opposite sign of M(y). We can therefore expect
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Fi16URE 4.—The function M (y) as defined by equation (3.15).
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Ficure 5.—The profile of the zonal wind initially and at 2, 3, and
3.5 days computed from equation (3.19) with =84, ¢=0,
zonal wavelength 5,000 km., width of the channel 3,000 km.,
B=30 m. sec.”!, 4, corresponds to 5 m, sec.”!, and 4;=0.

that the initial maximum in u(y,0) will be reduced during
the first time period after an integration has started
while maxima will tend to appear to the north and south
of the middle of the channel as time goes on. These
results are illustrated in figures 5 and 6, where we, in
figure 5, have computed the distribution of %(y,¢) for
t=0, 2, 3, and 3.5 days from equation (3.19). Figure 5 was
computed for non-divergent flow (¢=0), =8, a width
of the channel equal to 6,000 km., and a zonal wave-
length of 5,000 km. The initial maximum wind speed
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Ficure 6.—The profile of the zonal wind initially and at 0.5, 1.0,

and 1.5 days computed from equation (3.19) with parameters as in
figure 5 except Az corresponding to 5 m. sec.”!

was 60 m. sec.”* and A, was chosen corresponding to an
initial meridional wind of 5 m. sec.”!, while A;=0.
Figure 5 should be compared with figure 6 where the
parameters have the same values except that A4; also
corresponded to 5 m. sec.”™' in the meridional wind
component. The distribution of u(y,?) is only given for
t=0, 0.5, 1, and 1.5 day in figure 6. It is seen that the
presence of the waves on the smaller meridional scale,
initially, causes the splitting of the jet stream into the
two jet maxima to take place at a faster rate.

Figures 5 and 6 are very similar to those constructed by
Thompson [15] from his theory of large-scale turbulence
in barotropic flow as they, indeed, should be because the
physical model is the same. The changes predicted in
the zonal profile in our computation are however, due to
the presence of unstable barotropic waves, while Thomp-
son’s theory is based upon the interaction between eddies
and the mean flow expressed partly in quantities which
can be derived from the mean flow and partly in certain
statistical properties of the eddies. It will be noted also
that the time scale of the changes in the mean zonal flow
is the same in the two computations. It takes 2 to 3 days
to develop two distinet maxima in the profile of the zonal
wind from the single maximum present initially in the
center of the channel.

From our calculation we may therefore conclude that
if we have barotropic instability in a flow characterized by
a single maximum in the zonal wind, it is a dynamical
consequence caused by the convergence of the meridional
transport of momentum by the eddies that the zonal pro-
file will change to a profile with double maximum. This
is done by momentum being transported away from the
center of the channel in both directions by the eddies,
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which in turn means that the unstable barotropic dis-
turbances have a tilt of the trough and ridge lines, which
goes from southeast toward northwest south of the center
and from southwest toward northeast north of the center
of the channel. This tilt is opposite to the one generally
observed in the atmosphere. This fact points to the
importance of barolinic processes in the real atmosphere,
but the experiences in barotropic prediction show that
processes similar to those described in the present paper
definitely occur.

4. AN EXAMPLE OF BAROTROPIC DEVELOPMENT

Figure 7 shows a section of the 500-mb. analysis from
May 15, 1961 at 1200 e¢mr. The interesting feature on
this section of the hemispheric analysis is the fairly straight
jet stream from the eastern part of Canada over New-
foundland toward the southeast over the Atlantic Ocean.
Notice in particular that the isotherms are almost parallel
to the contours over a large section of the jet stream. The
isotachs for the map (not reproduced) show a maximum
of about 30 m. sec.”™ over Newfoundland with a drop to
less than 10 m. sec.™ on both sides in a distance of about
1,000 km.

Figures 8, 9, and 10 show analyses for May 16, 17, and
18 also for 1200 amr. Between May 15 and 16 a develop-
ment took place along the jet stream over Newfoundland.
The center of the circulation was located approximately
at 45° N, 35° W. on May 16, 1200 emT. Notice again on
figure 8 that we find no regions of strong temperature
advection. During the following day the number of
closed contours around the center increased, while the
Low drifted slowly toward the southeast with a position
at 43° N., 30° W. on May 17, 1200 a¢ur. The Low re-
mained almost stationary during the next 24-hour period
with a slight tendency toward filling.

The forecasts made with the 500-mb. operational model
from the initial data at May 15, 1961 at 1200 gMT are
shown in figures 11, 12, and 13. The 24-hour forecast
(fig. 11) shows that the barotropic model forecasted the
development of a closed circulation. The center located
at approximately 50° N., 35° W., is too far to the north.
However, the barotropic development continued in the
forecast between 24 and 48 hours and the circulation is
centered at 45° N., 20° W. in the 48-hour forecast. The
72-hour forecast shows a further increase in the number
of closed contours, but the center has now moved too far
toward the east.

The initial jet stream has been divided into two branches
on the observed maps and on the forecasts. Toward the
end of the period we find a rather broad current over the
eastern part of North America. This current divides into
two branches, one going toward the northeast over the
southern part of Greenland, the other bending toward the
southeast and continuing on the southern side of the Low,
which was developed in the Atlantic.

The development of the flow pattern in the example
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Frevre 7.—500-mb. analysis for May 15, 1961, 1200 emr. Solid

lines are contours and dashed lines isotherms.

Fiaure 8.—500-mb. analysis for May 16, 1961, 1200 eMmT.

shows therefore a great similarity to those predicted by
the linear theory. This type of barotropic development
is observed frequently in barotropic forecasting and results
usually in cold, cut-off cyclones. However, it is not the
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F1urE 10.—500-mb. analysis for May 18, 1961, 1200 aMT.

most frequent type of development in the troposphere.
The baroclinic developments associated with well devel-
oped divergence fields are the more common.

Tt is interesting to note that Murray [11] in a recent
investigation of baroclinic stability of stratospheric flow,

Ficure 11.—24-hour one-parameter forecast starting from May
15, 1961, 1200 amT.

especially the breakdown of the polar night jet located
close to the 25-mb. surface, indicates that the polar night
jet is baroclinically and inertially stable. He suggests,
therefore, that barotropic instability of the type discussed
here is responsible for the breakdown of the polar night
jet. This result is contradicted by the conclusions reached
by Boville [2] who states that ‘“baroclinic wave develop-
ment, fulfilling instability criteria and energy conversions
cf the Fleagle type appear to have been identified down
to wave number four.” The difference in the results of
the two (independent) studies can probably be ascribed
to the different models which were adopted, but it is
beyond the scope of this paper to resolve the question of
the stability of the polar night jet.

5. ENERGY CONVERSIONS

We shall next turn our attention to the energy conver-
sion between mean zonal kinetic energy and eddy kinetic
energy, the only energy conversion which is possible in the
model, if ¢g=0; i.e., no divergence. The prediction equa-
tioa is in this case

D¢/t -V Vi +Bu=0. (5.1)

When we divide each quantity into its zonal mean
value and deviation from the zonal mean value and intro-
duce these expressions into (5.1) we obtain the following
equation for the average flow:

D7/t VTV =0 (5.2)
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FicrurE 12.—48-hour one-parameter forecast starting from May
15, 1961, 1200 cmT,

This equation may also be written in the form:

—

D¢/t =0 (u' ") o’ (5.3)

because

d — d (ouN .
V’-V§’=‘7-(§"V’)=a~& (g"’?r’)z——-gy A é—%) (5.4)

but due to the non-divergence of the eddy-flow; i.e.,

ou’ v’
LS 5
ox ' oy 0 (5.5)
we obtain
0 () au'>ﬁ_ajz 2wy G
ay\" oy/ oy oy oy -
Theilast term 1s, however, zero, because
d [ ,o\__ D ,_a&')ﬁ -
(v ay)‘ 5 (0 55 )=0. 3.7)

The mean kinetic energy per unit mass and unit area
may in this model be written in the form:

= 1 1,6 1 D (@)2 3
from which it follows that
dE_1 (P3F 2 914) __1 f”—aj ]
Et—_‘DL oy oy \ot W==p), Yo G

Fr6URrRE 13.—72-hour one-parameter forecast starting from May 15,
1961, 1200 amr.

because 9% /0ydt=—0du/dt=0 at both boundaries at all
times. It is seen from (5.9) that we obtain the change in
kinetic energy by multiplying (5.3) by ¥ and then inte-
grating over the width of the channel. This procedure
leads to '

dE 1 (P 1 (P du’
71?__5[0 ‘b“adey*—Efo 72 dy. (510

The change in time of the eddy kinetic energy may be
found {rom a similar method which results in

f’K’glf”q—L@w
~DJ, oy Y

- (5.11)

It is then natural to define the following expression as
the energy conversion between eddy kinetic energy and
mean kinetic energy:

QW
oy

—_— D
e =-Zl)f % d. (5.12)
0

The gencral expression for energy conversion in isobaric,
non-divergent flow shows that il the zonal wind is posi-
tively correlated with the convergence of momentum
transport there is a conversion {rom eddy kinetic energy
to the mean flow kinetic energy, while negative correla-
tions between the two quantities give the opposite
conversion.

The energy conversion (5.12) will now be evaluated for
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the amplifying barotropic wave according to the analysis
made earlier in this paper. Restricting ourselves to this
part of the solution we find that the convergence of
momentum transport is given by (3.14)

ouv’
oy

=2M)\2(X1Z2“X2Z1) 62”‘8!‘[1/[(?]). (513)

When we substitute this expression together with the
expression (2.9) for @ in (5.12) we find after evaluation of
the integral

(K"K} =uNBe#{( X\ Zy— X Z)) = —uNBe»SIN*. (5.14)
The last expression gives us the sign of the quantity NV *
which was introduced in (3.16). The eddy kinetic energy
of the unstable barotropic wave can only increase as a
result of the conversion of energy from the kinetic energy
of the mean flow. The energy conversion {K’-K} is
therefore negative, which means that N*= —(X,Z,
— X,Z,) must be positive. The sign of N* was of vital
importance for the discussion of the changes in the zonal
wind profile carried out earlier in the paper.

It should be noted that the expression (5.14), on which
we have based the conclusion that N* is positive, is
evaluated without regard to the second-order changes in
the zonal momentum. The expression (5.14), applies
therefore only for a short interval of time initially, a fact
which does not destroy the argument. The importance
of the higher-order changes in the energy conversion and
the question of when the non-linear effects become signifi-
cant will be investigated at the end of section 6.

It is obvious that the linearized treatment of the baro-
tropic problem can describe the development of the pro-
file of the zonal wind and perturbations only up to the
time when there is considerable interaction between the
two parts of the motion. This is seen directly in the
expressions which we have derived for the change in the
zonal wind (3.18) and the energy conversion (5.14) which
will predict changes which tend toward infinity with
increasing time.

From energy considerations it is equally obvious that
the source of energy for the perturbation, i.e., the zonal
available kinetic energy, is finite, and that the growth of
the pertubation therefore must stop after a while, and the
energy conversion must change sign. The non-linear
interactions which are necessary for such processes can
only be incorporated by integrating a more complete form
of the prediction equation. Lorenz [9] has recently shown a
simplification of the non-linear vorticity which enables
us to retain the non-linear interaction by restricting the
fields to a few wave components. An integration of this
type will be described in the next section.

6. EXTENDED TIME INT%%%%\'I_HONS OF BAROTROPIC

The extended time integration of the
equation was carried out for two reasons.

barotropic
It was de-
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sirable to investigate the validity of the results obtained
from the linear analysis, and the changes in the zonal
profile, the momentum transport, and the energy conver-
sions could be investigated as a function of time in a more
general case. The integration can be considered as an
extension of Lorenz’s [9] original integration, which was
made with equations which were simplified to a maximum
extent. Guided by the results which we have obtained
during the linear analysis we shall formulate a system
which is general enough to allow double maxima in the
zonal wind profile, but simple enough to give a very
efficient computation.

The form of the expression for the mean zonal wind
(3.19) in the linear case suggests that an expression of the
form:

u(y, )=B@)+C(t)—B(t) cos (2ay)—C(t) cos 4Ny (6.1)

may be used with advantage in the numerical experiment.
The family of curves described by (6.1) for different val-
ues of B and € can vary between strong westerlies in the
center of the channel with easterlies near the walls and,
on the other extreme, strong westerlies near the walls
with easterlies in the center of the channel. The pre-
dicted values of B and € from given initial values will
therefore show the changes in certain types of zonal wind
profiles predicted from the barotropic equations. The
stream function corresponding to the mean zonal wind
(6.1) Is:

5, 0=DB+0) [ 1= 4 [+5sin @)+ sin @)
(6.2)

where D is the width of the channel and the constant of
integration has been determined in such a way that
v (D, t)=0.

The solution (3.13) for the perturbation stream func-
tion suggests, on the other hand, a prescribed expression
for this quantity of the following form:

1( ) (t)

sin Ay sin kxr4—5— sin 3\y sin kz

Vi(xy, ==

3()

1/5 ) sin Ay cos kr+4- sin 3Ay cos kx  (6.3)
which allows one wave number (k) in the zonal direction
and two wave numbers (A and 3)\) in the meridional direc-
tion. The complete stream function is then given by the
expression

Wz, y, ) =%y, ) ¢/ (2, y, t) (6.4)

Now (6.4) can be substituted in the vorticity equation

Y _ s Y

VY, —B8 5 35 (6.5)

in which g=df/dy is considered to be a constant, and we
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can by the technique developed by Lorenz [9] transform Q:)\j, R— ﬁ (6.6)
(6.5) into six forecast equations for the six amplitudes: k* k& '
B, C, B, E;, Fy, and F,, which are functions of time only.
With the notations: the six forecast equations for the amplitudes are:
dB )
i =2k E\Fy— EsF]
(‘ZJ(Z:'—Q/CQ[EIFg—EgFI]
(IE' Q—3 5Q+1 0—1 R
= OPggrn PP B s g )
(6.7)
dE, S 3Q—1 50—1 . R,
ok [(3*0& 20011 Py et ]3]
ZF o Q=3 SR+, TO—1 R ]
BE — BI, K. E
k| OB T BB sty B ey O B
@_ BQ—1 . 150—1 .. R :|
=k | B+ O Bty By (B )

We notice from the first two expressions in (6.7) that
B+ (0= M;=const. (6.8)

This result could have been derived a priori because it
simply expresses the fact that total zonal momentum of
the system is conserved.

It has been shown by Lorenz [9] that the simplified
barotropic equations (6.7) conserve the kinetic energy and
the square of the vorticity when these quantities are
integrated over the region. It should be noted that the
kinetic energy and the square of the vorticity are evaluated
as the sum of the contributions from the components
which are included in the forecasts.

The kinetic energy per unit area is in our case evaluated
{from the expression.

LDf f =V Vlﬁdmdy—_i.]Df f Vi dy.
(6.9)

We introduce the expressions (6.4), (6.3), and (6.2) in
(6.9) and obtain after evaluation of the integrals

1M 4-K?
8 K*

19N+ K?
8§ K

K—— (B+C)? + (B0 4= (E2+F3

(B’ +Fy). (6.10)

A direct proof that the kinetic energy is conserved can be
obtained by differentiating (6.10) with respect to time
and substituting from the system (6.7). This computa-

‘tion was carried out as a check on the derivation of the

system (6.7)
Let us further define the mean square of the vorticity

by the formula
1 L (D
— f f (VA dy.
0 0

Substituting again from (6.4) in (6.11) we obtain the
following expression for V:

LGSR
4 it

(6.11)

V=2)\2B2--8)\2(? (L1

1 (9>\2+k2)2
4

(EE+F3. (6.12)

Again we can of course obtain a direct proof that V as
expressed in (6.12) is indeed conserved. The two con-
served quantities, K and V| can be computed in each time
step during a numerical integration of the system (6.7).
If they are conserved during the integration, or at least
show no trend [or systematic increase, decrease, or violent
fluctuations, we have a good check on the behavior of the
numerical integration especially with respect to truncation
errors. Such a check was introduced in the numerical in-
tegration to be described later in this section.

It is one of the purposes of the numerical integration to
investigate the energy conversion between mean kinetic
energy and eddy kinetic energy during an extended period
of integration. We need therefore to evaluate the formula
for this energy conversion in our simplified model. This is
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accomplished by a substitution of (6.4) in (5.12) from
which we obtain

(K'-K} :%2 (B—C) - (E\Fs—E,F)). (6.13)

The energy conversion (6.13) was computed in each time
step during the numerical integration.

We shall next return to the fact that the total momen-
tum of the fluid is conserved as shown in (6.8). This con-
servative property puts a constraint on the amount of
zonal kinetic energy which can be released to the perturba-
tions, as shown by Platzman and Baer [13]. We may, in
other words, consider the total zonal kinetic energy as
composed of two parts: the available zonal kinetic energy
and the unavailable energy. It is easy to evaluate the two
quantities in the simple model used in our experiments.
The zonal part of the kinetic energy is, as can be seen
{rom (6.10),

E=L (B+0) 4 (B4, (6.14)

We can combine (6.14) with (6.8) and rewrite (6.14) in
the form:

E2=2 M02+-;- B(B—M,) (6.15)
from which it is seen that
5Ez:<B~—;— Mo> 5B. (6.16)

F, is therefore at a minimum if B=1% A, in which case we
also have C=¥%M,. In our case there exists therefore a
particular profile of the zonal wind, described by (6.1), for
which the zonal kinetic energy is at a minimum, namely
the one for which B=(. The minimum value of the zonal
kinetic energy is evaluated from (6.14) with B=(C=%M,
and is

5

Eyz,min.ngoz (617)

This is the unavailable part of the zonal kinetic energy.
Only 3/8 of the initial momentum squared is therefore
available for conversion to eddy kinetic energy. Sub-
tracting (6.17) from (6.15) we can evaluate the available
zonal kinetic energy. It becomes

_l 2_1 _l (2
Ez,av.~8M0 ZBC—S (B O) . (618)
We notice here that if BzCzéMo we get no available,

zonal, kinetic energy. It should further be mentioned
that very large values of zonal, available energy are ob-
tained in the case that A,=0, which means that B=—C,

in which case Ez_,w,=%Bz. We shall illustrate later by
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Fictre 14.—Case 1. The zonal velocity as a function of time and
meridional distance over one period. Initial parameters: B,=
30 m. sec.”!, C,=—15 m. sec.”], E;j=25 m. sec.”!, Ey=F,=
Fg=0, 8=B4s, width 3,000 km., zonal wavelength 5,000 km.

the results of the actual calculations that very large
changes in the zonal flow take place in this case.
Numerical integrations of the system (6.7) have been
carried out in a number of cases. In the following we
shall describe some of the more interesting results. The
integration was performed using central finite differences
in time except initially, where one uncentered step was
taken. The time step has been 1 hour in all the calcula-
tions. We shall treat four different cases. The calcula-
tions were in all cases carried out to 24 days (576 time
steps), but since all the computations turned out to be
periodical we shall usually illustrate only a shorter time
period. The finite difference system in time was tested
by coraputing the kinetic energy per unit area and the
square of the vorticity per unit area. These quantities
showed only small fluctuations during the complete inte-
gration, indicating that the finite difference system used
in these calculations is good enough even for extended
integrations with the present system. A short descrip-
tion of the results of four integrations follows.
Case 1: As the first example we have selected a case
where the initial flow pattern is barotropically unstable.
The zonal wavelength was taken to be 5,000 km. and the
width of the channel 3,000 km., corresponding to a maxi-
mum meridional wavelength of 6,000 km. The quantities
B and ' were selected initially at 30 m. sec.”™! and —15
m. sec.”!, respectively, giving a zonal wind profile with a
single maximum in the center of the channel of 60 m. sec.™!
The profile has also weak easterlies close to the walls with
8 maximum easterly wind of about 7 m. sec.” The
initial disturbance was defined by putting E;=25 m. sec.”?,
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Freure 15.—Case 1. The zonal kinetic energy as a function of
time over one period (upper curve, right scale). The energy
conversion between zonal and eddy kinetic energy as a function
of time over one period (lower curve, left scale).

while E;=F,=F;=0 initially. The disturbance defined

by these values has a south-north direction of the trough
and ridge lines and has, therefore, initially no transport
of momentum.

The changes which take place in the zonal winds
during the forecast are illustrated in figure 14, where
the zonal wind profile is shown as a function of tune in
hours. The forecast turns out to be periodic with a
period close to 44 hours. We have therefore only shown
one period. The initial maximum in the zonal wind in
the center of the channel breaks down and is after about
22 hours replaced by weak easterlies of 2-3 m. sec.™!
At the same time two maxima of westerly zonal winds
form to the north and the south of the center of the chan-
nel with speeds of 28-29 m. see.”' After 44 hours we are
back to the initial zonal wind profile. The forecast pre-
dicts therefore an oscillation in the zonal wind profile vary-
ing between a single and a double maximum in the jet
stream.

The processes which determine this oscillation are
described in figure 15, in which the lower curve shows
the energy conversion between zonal kinetic energy and
eddy kinetic energy. During the first hours of the
forecast the energy is converted from the zonal flow to
the eddies. This conversion reaches a maximumn after
about 8 hours, but remains positive up to about 15 hours,
when the sign of the conversion changes for a few hours
and becomes zero shortly before 22 hours. The upper
curve shows the variation with respect to tume of the
kinetic energy contained in the zonal flow. In agree-
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Ficure 16.—Case 2. Zonal velocity as a function of time and

Parameters as in case 1

meridional distance over one period.
(fig. 14) except C,=30 m. sec.” .
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Ficuvre 17.—Case 2. Zonal kinetic energy as a function of time
over one period (upper curve, right scale). The energy conver-
sion between zonal and eddy kinetic energy as a function of time
over one period (lower curve, left scale).

ment with the energy conversion curve we find a decrease
in the zonal kinetic energy up to 15 hours, when it in-
creases slightly, and then a decrease again before it finally
starts to increase to complete the cycle after 44 hours.
We can compute the amount of unavailable zonal
kinetic energy from the formula (6.17). With B,=30
m.sec.”! and Cy=—15 m.sec.”! we find My,=15 m. sec.”!
The minimum zonal kinetic energy is therefore E, ,,;,=
140.6 m.? sec.”® It is interesting to note that this is
equal to the actual minimum on the curve for E,, in-
dicating that all the available kinetic energy in the zonal
flow actually is being released to the perturbations.
It also indicates that very large amounts of kinetic energy
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may be released to the perturbations if we specily the
initial zonal wind profile in such a way that the momentum
is small. In order to test this we computed a second case.
Case 2: In this case we have chosen B= —('=30 m.
sec.”!, which makes the zonal momentum M;=0. The
unavailable kinetic energy vanishes therefore in this
case, and the total amount of kinetic energy is at the
same time larger. In this admittedly extreme case we
have again a maximum of 60 m. sec.”! in the center of
the channel in the initial, zonal wind profile with ecaster-
lies to the north and south of 33 m. sec.”! (fig. 16). The
period in the forecasts turns out to be about 54 hours in
this case. Very violent fluctuations take place in the
zonal winds at the different latitudes in this case. In
the middle of the period we find easterlies in the center
of the channel of 55 m.sec.™, while the westerlies in the
northern and southern portions, at the same time, have
increased in strength to more than 30 m.sec.”™? It can
be seen on figure 16 that the forecast passes through a
state between 13 and 14 hours in which there is no zonal
wind, a situation which is found again between 40 and
41 hours.

Figure 17 (corresponding to fig. 15 in case 1) shows the
time variation of the zonal kinetic energy and the energy
conversion between zonal and eddy kinetic energy.
We find as expected that the zonal kinetic energy decreases
to zero between 13 and 14 hours and again between 40
and 41 hours. The energy conversion is naturally zero at
the same time after having been positive, since all the
kinetic energy has been converted to eddy kinetic energy.
The secondary maximum in the zonal kinetic energy in
the middle of the period where the energy conversion
again is zero corresponds to the maximum intensity of the
double jet stream seen in figure 16 at 27 hours.

Case 3: The initial zonal wind profile for this case was
similar to case 1 in the sense that B and C initially had
the same values (B,=30 m.sec.”!, (j=—15 m.scc.” ),
but the dimensions of the region were increased. The
width of the channel was taken to be 10,000 km., equal
to the distance between pole and equator on the earth.
The wavelength in the zonal direction was also taken to
be 10,000 km., making the initial flow stable according
to the linear theory (see figs. 2 and 3). The initial per-
turbation was again prescribed by setting £;=25 m.sec.™!
initially, while all the other amplitudes were zero initially.

Some results from this forecast are shown in figures 18
and 19. The first (fig. 18) shows a record of the strength
of the zonal wind in the center of the channel and at
a distance 0.2D from the wall. The zonal wind in the
center shows a regular variation between 60 m.sec.™! and
32.5 m.sec.™ with a period of slightly more than 6 days,
while the variation closer to the wall is between —6
m.sec.”! and +9 m.sec.”! with the same period. We find
again a tendency to divide the initial single jet maximum
into two maxima, because the westerly wind close to the
wall is at a maximum at the same time as the zonal wind
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Freure 18.—Case 3. The zonal velocity in the center of the
channel and at a distance of 0.2 D from the wall as a function of
time. Parameters B,=30 m. sec.”!, C,=15 m. sec.”!, Ey=
Fy=F3=0, =84, width 10,000 km., zonal wavelength 10,000
km.
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Ficure 19.—Case 3. The zonal kinetic energy as a funetion of time
over one period (upper curve, right scale). The energy conver-
sion between zonal and eddy kinetic energy as a function of
time over one period (lower curve, left scale).

is at a minimum in the center of the channel. The energy
conversion between zonal and eddy kinetic energy is
plotted in figure 19 as a function of time together with the
time variation of the zonal kinetic energy itself over one
period (about 148 hours). The two curves have this time
a very regular variation, where the zonal kinetic energy
goes to a minimum equal to the value estimated from
equation (6.17) in the middle of the period.

Case 4: The initial specifications for this case were
By=30 m.sec.”!, Cy=—30 m.sec.”!, the width of the
channel 10,000 km., and the zonal wavelength 10,000 km.
We have therefore again chosen a situation where the
total zonal momentum vanishes. The variation of the
zonal wind in the center of the channel and at a distance of
0.2D from the wall is shown in figure 20 as a function of
time over a 24-day period. The zonal wind in the center
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Ficure 20.—Case 4. The zonal velocity in the center of the
channel and at a distance of 0.2 D from the wall as a funection of
time. Parameters as in case 3 (fig. 18) except C,= —30 m. sec.™.

varies between 60 m.sec.” and 0 m.sec.”! with a period of
5% days, while the zonal wind at 0.2D varies between—33
m.sec.”’ and 0 m.sec.”'. Notice, that no zonal wind
exists at 2% days and at intervals of 5% days thereafter.
This picture is consistent with the curvesin figure 21 where
we notice that the kinetic energy of the zonal flow goes to
zero in the middle of the period.

The characteristic period of 56 days which has been
found in these integrations agrees with the typical time

scale found by Thompson [15] in his theory of long- -

period variations in barotropic flow. A further agreement
is found between the results obtained here and those
reported by Charney [4] from a single extended integration
of the barotropic vorticity equation and by Baer [1].

Some support is also found in analysis of atmospheric
data for periodicities of this order of magnitude. Refer-
ence is made to the observational studies by Mintz and
Kao [10] who found a period of 3-5 days in the convergence
of the meridional transport of momentum at certain
latitudes during January 1949, The study by Duggan [6]
of the meridional convergence of momentum also shows
periodicities of this order of magnitude.

The results of the non-linear integrations can be used
to obtain information about how soon the higher-order
effects become important. One may, for example, obtain
this information from curves giving the energy conversion
from zonal kinetic energy to eddy kinetic energy as a func-
tion of time in the non-linear computation and estimated
from the linear theory including terms of different orders.

Substituting the expression (3.19) for u (y, t) and (3.18)
for —d (w” v’)/dy in the formula (5.12) for the energy con-
version we find first that

(RE'} =aweN*sinh @us0)-| 35 [ 7r,0M@y |

4 2 ?
_SM.ASN* (cosh (2uSt)—1) sinh (2uSt)- [})f M "’@/)dy] '
0

(6.19)

The first term on the right hand side of (6.19) gives the
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Ficure 21.—Case 4. The zonal kinetic energy as a function of
time over one period (upper curve, right scale). The energy
conversion between zonal and eddy kinetic energy as a funection
of time over one period (lower curve, left scale). :

contribution which depends upon the initial profile »
(y, 0), while the second term is independent of the initial
profile. Since the meridional distribution of the conver-
gence of momentum transport, expressed by the function
M(y), is a second-order effect, we may say that the first
term in {K - K’} is of second order, while the last term
is a fourth-order effect.

When the expressions (2.9) for u (y, 0) and (3.15) for
M(y) are introduced in (6.19) we obtain after evaluation
of the integrals

(K- K’} =2u)\N*B sinh (2uS?)

4 N2
—S“XSN sinh (2uS?) - (cosh (2uSH)—1).  (6.20)
The following case was selected for comparison. The

zonal wavelength was chosen to be 5,000 km., the maxi-
mum meridional wavelength to be 6,000 km., 8=16X
1072m. 'sec.”!, B=30 m. sec.”!, and ¢*=0. The curve
without marks in figure 22 gives the energy conversion in
the non-linear computation as a function of time. The
energy conversion increases to a maximum, which is
reached after approximately 44 hours. The curve in figure
22 marked with circles is the energy conversion computed
from (6.20) including, however, only the first term. By a
comparison of the two curves we find that the curve
including the second-order effects gives a good estimate of
the energy conversion up to approximately 24 hours,
although the estimate is slightly too high. When the
fourth-order effects are included in the evaluation of (6.20),
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Ficure 22.—The curve without marks gives the energy conversion
as a function of time in a non-linear calculation with the following
parameters: zonal wavelength 5,000 km., maximum meridional
wavelength 6,000 km., §=16X 1072 m."! sec.”!, B=30 m. sec.”},
and ¢¢ =0. The curve marked with circles gives the energy
conversion computed from the linear solution using the same
parameters and including second-order effects, while the curve
marked with squares also includes fourth-order effects.

we obtain the curve in figure 22 marked with squares.
This curve gives a very good estimate for a little longer
period than the second-order curve, but then rapidly
shows an underestimmate. The main result of the inclu-
sion of the fourth-order term in (6.20) is, however, that
this term actually predicts that the energy conversion
will reach a maximum. The main conclusion from figure
22 is that the higher-order effects become important after

about 1 day.
7. SUMMARY

The first sections of this paper contain a stability
investigation of the divergent, one-parameter model.
The main conclusion is that the introduction of a diver-
gence term into the model tends to reduce the instabilities
present in the non-divergent model. The second-order
effects of the disturbances on the profile of the zonal
wind are investigated. It is found that the unstable
barotropic disturbances tend to cause a decrease of the
zonal winds in the center of the channel and an increase
of the mean zonal winds to the north and south.
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A simple non-linear barotropic model containing only
a few wave components is investigated in the next sections
through integrations over extended time periods. The
changes in the profile of the zonal wind, the energy con-
version between kinetic energy of the mean flow and the
eddies, and the time periodicities of the flow are investi-
gated. Fluctuations of the order of 2 days are foundin
initially unstable flow, while the large-scale stable flow
pattern shows periods of the order of 6 days.
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